Foundations of 3D Computer Graphics
Meshes and Subdivision

Assignment Objectives

The purpose of this assignment is to use a mesh data structure and implement Catmull-Clark subdivision.

We provide you with a mesh data structure, a mesh file, and some shaders. You will build on top of the
previous assignment and reuse the scene graph, the material infrastructure, and the corresponding picking
and manipulation functionality. We provide a file “mesh.interface” which documents the interface provided
by the Mesh class, and a sample usage of the Mesh: :VertexIterator class which you will need in order to
walk around the 1-ring of a vertex.

Preparation

Copy all the files in the starter zip into your project directory. This time you will use another Geometry
implementation, the SimpleGeometryPN in addition to the SimpleIndexGeometryPNTBX employed in the
previous assignment. The SimpleGeometry* classes internally do not use an index buffer to store vertex
indices for each triangle. Instead triangles are formed by grouping together three consecutive vertices in the
vertex buffer. Thus the i-th triangle is made up from the (3i)-th, (3i41)-th and (3i42)-th vertex in the vertex
buffer (counting from zero). This unindexed format is useful since later on, you will draw the subdivision
surface in “faceted shading” mode first, which means different triangles cannot share vertices as they have
different normals.

Both SimpleGeometry* and SimpleIndexeGeometry* have a upload function for (re)specifying the ge-
ometry data, e.g.,

void SimpleGeometryPN::upload(const VertexPN* vertices, int numVertices);

void SimpleIndexedGeometryPNTBX: :upload(const VertexPNTBX* vertices,
const unsigned short* indices,
int numVertices, int numIndices);

Basically you need to pass it a pointer to a contiguous block of memory containing the vertex data, and
the number of vertices contained in that region. You need to do the same for indices when dealing with
SimpleIndexedGeometry*. You can also optionally provide the geometry data in the constructors of the
Simple*Geometry* classes.

There is also a new fragment shader specular-gl{2|3}.fshader. You should pair it up with the basic
vertex shader and load them into a new Material. Specify a color for that material using the uColor uniform
variable, and use it for drawing the subdivision mesh.

Task 1

Read in the cube mesh from the provided file “cube.mesh”. The mesh will just be a cube with 6 quads as
faces.

Implement a function that uploads a Mesh to an existing SimpleGeometryPN object using its upload
member function. This allows the mesh to be drawn on screen.

Although though the Mesh data structure will store quads, you will need to turn each quad into two
triangles before loading into the SimpleGeometryPN object.



At first will draw the mesh using “flat shading”, wherein you use the same normal for all vertices in a
face. You can use the mesh data structure call to Face.getNormal() to obtain the proper normals for each
face.

Next add a new SgRbtNode to the scene graph, along with a MyShapeNode child constructed from your
SimpleGeometryPN instance and your Material instance (created off the “specular” fragment shader).

Now when the scene graph gets drawn, the dynamic geometry for the subdivision surface should be
drawn, although it is only a cube for now.

Task 2

Next you will implement “smooth shading”. To do this, you need to compute one “average normal” for each
vertex. An average-normal at a vertex will be the average of the normals of all the faces incident to the
vertex in the mesh. Once you have set the normal at a vertex using Vertex.setNormal (), you can read it
back using Vertex.getNormal().

One way to compute the average normal would be to use a vertex iterator. In order to deal with non-
manifold meshes, that may appear in later assignments, we instead suggest the following. First zero out all
of the vertex normals. Then, iterate through the faces of the mesh and and accumulate its normal to all of its
surrounding vertices. Once this is done, to get the correct average vertex normals, you visit each vertex and
divide its accumulated normal by the vertex’s valence. This last step will use a call to Vertex.getNormal ().

To draw the mesh with “smooth shading”, use the average-normal of each mesh vertex to set its value
in the SimpleGeometryPN object.

Task 3

Register a GLUT timer callback (as in previous assignments) and use it to “animate” the vertices of the
cube. In particular just scale the object coordinates of each of the cube’s vertices by a periodic, time-varying
scalar. (You should have a different scale for each vertex. Also the sin function could be used here.) Every
time, the cube’s vertices are animated, you should dump it to the geometry, so the updated geometry will
be drawn when the scene graph gets drawn.

Task 4

Implement subdivision. Use the Catmull-Clark rules to calculate the coordinates for new face-vertices, new
edge-vertices, and new vertex-vertices. The easiest way to do this is to first loop over all of the faces of
the mesh and compute faceVertex values. Then loop over all of the edges and compute edgeVertex values.
Then loop over all of the vertices and compute vertexVertex values. This last computation will again
require using vertexIterators to walk around the neighborhood of a vertex. As they are computed, you
can place these coordinates in the appropriate slots in the data structure Using calls to setNewFaceVertex,
setNewEdgeVertex and setNewVertexVertex. This calculation will also require looking up faceVertex values
just computed so you will also need calls to getNewFaceVertex.

Once all of the slots are filled in, then call the subdivide routine. This routine will use the coordinates you
provided for face-vertices, edge-vertices, and vertex-vertices to compute the new, subdivided mesh. Iterate
this process 3 or 4 times.

Once you are done with the subdivision, you will compute average-normals for the final vertices, and use
these normals when drawing the mesh using “smooth-shading”.

You final version will include the following hot keys:

o ‘f” will toggle between smooth and flat shading.

e ‘0’ will increase the number of subdivision steps applied to the cube before being drawn. You should
cap the subdivision steps around 6 and 7.

e ‘9’ will decrease the number of subdivision steps applied to the cube before being drawn.



e ‘7’ will half the speed at which the cube deforms.
e ‘8" will double the speed at which the cube deforms.

When the subdivision level is high, your program might run really slow. It helps to instruct the compiler
to build the software in optimized mode, which will makes the program much faster at the expense of
debugging convenience. To do so, under Visual Studio, choose “Release” as opposed to “Debug” from the
drop down list box in the tool bar, and build. Under Mac/Linux, first do a make clean to remove any
compiled files. Next do a make OPT=1 to rebuild with optimization turned on.

Note:

Remember that you will be starting from the simple cube and applying subdivision every time that you need
to animate the cube and update the dynamic geometry. To do this you can use two meshes: a “reference”
mesh that holds the original cube unmodified, and a “temporary” mesh. Every time that your idle function
is called, you can create a temporary mesh to be a copy of the reference mesh (a copy constructor and copy
assignment operator is provided in the Mesh class), you can then subdivide the temporary mesh and draw
it. This way the reference mesh is unchanged and still represents the simple cube, so you can use it the next
time you need to draw a frame.



